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T W O  M E D I A  D U E  T O  P A S S A G E  O F  T W O  S U C C E S S I V E  S H O C K S  
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The instability of a free surface of aluminum after passage of two shocks that follow one after 
the other at a certain time interval is studied numerically. The first shock is rather strong (the 
postshock pressure is about 75 GPa). It is shown that if at the moment when the second shock 
arrives at the free surface, the perturbation evolution is nonlinear, then, in contrast to the 
linear stage, the change in the growth rate of the amplitude depends weakly on the wavelength 
of the initial perturbation. A formula is proposed which describes the effect of the second 
shock on the amplitude growth rate and in which the main structure of Richtmyer's formula is 
preserved. It is demonstrated that the parameters of the second shock that ensure freezing of 
the instability can be determined using only the growth rate of the amplitude. 

I n t r o d u c t i o n .  The instability of an interface between two media due to passage of a shock wave, 
which is called Richtmyer-Meshkov instability [1, 2], has been studied in many papers (see, e.g., [3-8] and the 
bibliography in [8]). In particular, tile interest in Richtmyer-Meshkov instability is motivated by continuing 
research in the field of controlled inertial fusion. 

Let us describe the basic features of development of this instability. Let a shock propagate from a 
medium with density Pl into a medium with density P2. Tile case of passage of the shock from a light 
material into a heavy material (pl < P2) and tile opposite situation (Pl > P2) are distinguished. In both 
cases, the shock first leads to a certain decrease in the perturbation amplitude, and then the amplitude grows 
linearly with time. The behavior of the perturbation phase is different. In the case Pl < P2, the perturbation 
phase does not change, whereas in the case Pl > P2, the growth in the amplitude is preceded by inversion of the 
perturbation phase. This effect was first revealed experimentally [2] and then it was confirmed theoretically 
by numerical solution of the equations of hydrodynamics [3]. 

With  passage of the shock, the interface between two media acquires impulsive acceleration, i.e., the 
acceleration time is equal to zero and the increase in velocity is finite. The flow produced by constant (in 
time) acceleration of the interface has been adequately studied. It is known that for Pl > P2, this flow is stable 
[in contrast to the case Pl < P2, where the well-known Rayleigh-Taylor instability occurs with perturbation 
amplitude increasing exponentially with time]. The motion of the interface with acceleration that  is constant 
in time can be approximately replaced by a sequence of impulsive accelerations following one after another 
at a short time interval which goes to zero in the limit. For pl > p2, this implies the possibility of obtaining 
steady flow from a sequence of unsteady flows, and this is related to the phase inversion described above. 
Indeed, the perturbation amplitude first decreases when phase inversion occurs, and its subsequent growth is 
prevented by the next impulsive acceleration which again results in phase inversion. 

The question arises of whether it is possible to weaken the Richtmyer-Meshkov instability for Pl > p2 by 
a second shock propagating in the same direction as the first. Apparently, the development of the instability 
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in the case of two successive shocks was first considered in [9] for potential  flow of incompressible liquids 
with impulsive acceleration of the interface. Below, we present a nonrigorous derivation of the formula for 
the growth rate of the amplitude of a sinusoidal perturbat ion,  based on physical arguments and Richtmyer's 
formula for a single shock: 

& = 2rra0 Av, 2zrla~ 

where a = a(t)  is the per turbat ion amplitude as a function of time t, a0 is the initial amplitude, A is the 
per turbat ion  wavelength, A = (P2 - Pl) / (P2 + Pl) is the Atwood number, and v is the change in the velocity 
of the interface after passage of the shock; a dot denotes differentiation with respect to time. 

Strictly speaking, formula (1) corresponds to impulsive acceleration of the interface between two incom- 
pressible liquids rather  than to passage of a shock through the interface. In the case of a shock, Richtmyer's 

formula contains the densities Pl and P2 and the amplitude a0 immediately after passage of the shock rather 
than the initial values of these quantities. For the subsequent consideration, which is qualitative in character, 
this remark is however not important .  

Richtmyer obtained formula (1) for the case pl < P2 (Av > 0). However, later it became clear that  
it also applies for the case Pl > P2 (Av < 0) if the change of sign of the amplitude a(t)  is t reated as phase 
inversion. 

After passage of the first shock, 

2zr 
= &l = --~ Aaovl ,  (2) 

where vl is the velocity of the interface after the first shock. Since we consider here the case A < 0, vl > 0, 
it is convenient to set a0 < 0. Then, 51 > 0 and, after inversion of the phase of the initial perturbat ion,  the 
amplitude a > 0. 

Let the interface be instantaneously accelerated to velocity Vl + Av after passage of the second shock. 
Using Richtmyer 's  formula again, for the amplitude growth rate after passage of the second shock, we obtain 

27ram 
5 = 5 2 = 5 1 + 3 m A A v ,  3 m - -  A ' (3) 

where am is the per turbat ion amplitude at the moment  t2 of arrival of the second shock and ~3m is the relative 
amplitude. The amplitude am can be expressed in terms of t2 using (2): 

52 = 52 l + AV  + A A v t 2  . (4) 

For A < 0, A > 0 exists such that  fi2 = 0. This effect is called freezing. In general, however, formula 
(4) gives an unfavorable prediction for the development of the instability at large times. Indeed, for specified 
Av and t2 and for A --~ 0, we have d2/51 --~ - e c ,  i.e., the second shock can indefinitely increase the growth 
rate of a short-wave perturbation.  It should be taken into account, however, tha t  the conclusion drawn above 
is valid only if at the moment of arrival of the second shock, the instability of the interface is at the linear 

stage (~m << 1). Formally, this follows from the applicability condition for Richtmyer's formula. 
For the nonlinear evolution of per turbat ions (~rn ~ 1), a theoretical s tudy of the effect of additional 

acceleration of the interface is possible only by numerical calculations of the equation of hydrodynamics.  For 
example, a numerical study [10] of the stability of shaped-charge jets in conical targets revealed the following 
mechanism of weakening of the Richtmyer-Meshkov instability. A leading shock passing from aluminum 
into deuter ium initiated instability of the interface. In addition to this, one more compression wave moved 
along the interface, and the corresponding increase in pressure past the front of this wave resulted in an 
additional acceleration of the interface. The  phase inversion of the per turbat ion due to this acceleration and 
the associated drop in the amplitude occurred even when the evolution of the instability was substantially 

nonlinear. 
There  has been just a few experimental  studies of the stability of the interface for two successive shocks. 

In some experiments with shock tubes, besides the initial shock, secondary shock waves, reflected from the 
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tube walls, also affected the interface (see, e.g., [11]). However, the pure case of a sequence of two shocks 
propagating in the same direction has not been studied. In these experiments, at least one of the secondary 
waves was opposite in direction to the initial wave. As far as we are aware, the only experimental study of two 
shocks going in the same direction in the case A < 0 was performed by" Dimonte et al. [8]. In the experiment 
of [8], the initial shock was generated by strong x-radiation, and the second shock appeared after reflection of 
the depression wave from the ablation front. The wavelength of the interface perturbat ion varied over a wide 
range. As follows from (2), the growth rate of the amplitude of a long-wave per turbat ion is comparatively 
small. At the moment of arrival of the second shock wave, the amplitude of the long-wave perturbat ion was 
so small tha t  the second wave practically did not affect the development of the instability. For a short-wave 
perturbat ion,  the situation was different. By the moment of arrival of the second shock, the per turbat ion 
ampli tude was sufficiently large, so that  this wave sharply slowed down the further growth in amplitude. As 
a result, as shown in [8], at the moment of measurement,  the amplitude of the short-wave perturbat ion was 
even smaller than that  of the long-wave perturbation.  

In the present paper, we s tudy numerically Richtmyer-Meshkov instability for two successive shocks 
in the case A < 0. In contrast to [9], here primary at tent ion is given to values/3m ~ 1. 

F o r m u l a t i o n  o f  t h e  P r o b l e m  a n d  N u m e r i c a l  M e t h o d .  We consider the instability of a free 
surface of aluminum after passage of two successive shocks that  follow one after the other at a certain time 
interval. The  first shock is rather strong, so that  we can use the equations of hydrodynamics. Viscosity and 
thermal conductivity are ignored. For the chosen parameters,  the velocity past the first shock is 3 km/sec, 
the pressure is 75 GPa, and the aluminum is in the liquid state. The equations of state for aluminum had 
the form of tables of values of the pressure and internal energy versus the temperature  and density, compiled 
in accordance with [12]. 

Let us define the problem more accurately. We consider two-dimensional flow that  depends on two 
Cartesian coordinates x and y and is unbounded along the x axis (see Fig. 1). At the time t = 0, the 
aluminum layer is at atmospheric pressure and room temperature.  On the upper boundary of the layer, the 
velocity of the substance is prescribed: 

= ~  - u l ,  0 ~< t~7 - ,  
Ux O, ~y [ - ( u l  + A u ) ,  t > r 

(v is the delay of the second shock). For Au > 0, this boundary condition initiates two successive shocks 
in aluminum at t = 0 and 7. For specified thickness of the layer h and velocity ul  > 0, the parameters Au 
and 7 are chosen so that  the first shock enters the lower boundary of the layer before being overtaken by 
the second shock. The lower boundary is at atmospheric pressure. The velocity of the lower boundary after 
arrival of the first and second shocks at it was determined by numerical calculation of the corresponding 
one-dimensional problem using rather  fine meshes. For a velocity ul = 3 km/sec, the velocity of the lower 
boundary vl ~ 6.2 km/sec, and this agrees with the rule of doubling of velocities [13] for weak shocks. This 
rule is also satisfied for the second shock, whose arrival at the lower boundary increases the velocity of the 
boundary by Av ~ 2Au. The layer thickness h = 5 mm is chosen such that  the perturbat ion of the lower 
boundary does not reach the upper boundary in the t ime of numerical calculation. At the moment t = 0, the 
upper boundary has coordinate y = h, and the equation of the lower boundary is 
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27rx y(x)=~cos ~ , 

where ~ and ~ are the amplitude and wavelength of the initial perturbation.  It is sufficient to solve the 
problem in the interval 0 <~ x ~ ~/2 with a symmet ry  condition at its ends specified in such a manner  that  
in the absence of dissipation, it is equivalent to the condition on a rigid wall. 

The numerical calculations were performed using the same software as in [10]. All the boundaries of 
the domain including the free surface were chosen explicitly as certain lines of a regular curvitinear mesh. 
We used second-order quasimonotonic schemes based on Godunov's  scheme. The only difference from [10] 
was a new method of calculating curvilinear meshes: instead of the method of [14] we used its modification 

proposed in [15], which improved the quality of the mesh near the free surface while preserving the convexity 
of all quadrangular cells of the mesh. 

Along the upper  boundary and the free surface, the mesh points were placed uniformly. Along the 
side boundaries x = 0 and x = A/2, the distribution of mesh points was nonuniform since values A << h 
were taken. Near the free surface, the mesh points were located uniformly with a mesh step of the same 
order as that  along the free surface. Away from the free surface, the mesh step along the side boundaries 
was gradually increased, so that  the ratio of the mesh steps for adjacent cells did not exceed 1.05. Apart  
from the calculations using a two-dimensional scheme for the entire domain, we carried out calculations with 
an artificial internal boundary y = y.( t ) ,  above which for y > y. the flow was considered one-dimensional 
and was calculated using a one-dimensional second-order finite-difference scheme in Lagrangian variables. 
Near the artificial boundary, the step of the one-dimensional Lagrangian mesh coincided with the step of the 
two-dimensional mesh along the side boundaries with an accuracy of a few percent. The two-dimensional 
mesh had 50-100 intervals along the free surface. Along the side boundaries, the mesh had 80-160 intervals 
in calculations with the artificial internal boundary  and 200-300 in calculations without it. Test calculations 
were carried out using various meshes for the same values of the parameters of the problem. These calculations 
reproduced each other fairly well. 

In the numerical method used here, it is necessary to reconstruct the mesh if the simple connectedness of 
the flow domain is broken, and this is a t ime-consuming 'procedure. Therefore, if for the specified parameters  
of the problem, the simple connectedness of the domain is broken at some time, the calculation is carried out 

only up to this moment.  
R e s u l t s  o f  C a l c u l a t i o n s .  In what follows, the results will be compared with formula (3). For the 

free-surface problem considered here, one should set P2 = 0 and. hence, A -- - 1 .  The change in the free- 
surface velocity Av after passage of the second shock is determined in accordance with the above-mentioned 
rule of doubling of velocities Av = 2Au. The  remaining quantities in (3) are obtained using the function 
Ay(t) ,  which is the difference between the maximum and minimum values of the y coordinate of the boundary. 
The  difference derivative of the function Ay(t) has small oscillations, which are filtered out by averaging over 
the period of oscillations. We denote the result of the averaging by A~(t). 

To determine the moment t2 when the second shock comes to the free-boundary, we compare the 
function Ay(t) with an analogous function obtained in a calculation without a second shock. The  t ime from 
which these functions become different is taken as t2. As a result, we obtain the growth rate of the amplitude 
before passage of the second wave 51 = Ay(t2) and the amplitude am = Ay(t2), which, in turn, determines 
the parameter  ~m in (3). Then, for the growth rate of the amplitude after passage of the second wave, we 
set  1521 --~ IAy(t~)] for some t~ > t2. The choice of t~ and the sign of 52 depend on the form of the function 
Ay(t) in a particular calculation. If the sign of A/)(t) changes at some t o > t2, negative 52 are assumed and 
the maximum value of lAy(t)] for t > t o is chosen as a 1521. If the sign of A~(t) does not change for t > t2 
then 52 is assumed to be positive and the inflection point of the function Ay(t) or the maximum time of 

calculation are chosen as t~. 
Thus, from the calculation result we independently determine the parameter  ~m and the change in the 

amplitude growth rate  A5 ---- 51 --52. Instead of the latter, it is convenient to introduce the parameter  ~*: 

A 5  = -~* A A v .  (5) 
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TABLE 1 

A 3~ al -a2 ~3" h~ sM 

0.2 1.8 0.54 0.8 1.34 0.51 
0.4 0.46 0.29 0.14 0.43 0.26 
1.0 0.075 0.11 -0.035 0.075 0.11 

Y- Y~/2, mm 
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' 0104 x, mm 

6 ; 

i 

Fig. 2 
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It  is easy to see that  (5) coincides with (3) if 13" = 3m. 
We first consider results for small values of/3m for which Eq. (3) is valid. For fixed parameters of the 

shocks ul = 3 km/sec,  Au = 0.5 km/sec, and 7- = 0.27 #sec and an amplitude of the initial per turbat ion 
= 0.004 ram, we consider wavelengths A = 0.2, 0.4, and 1.0 mm. The calculation results are shown in Table 

1 (h RBM is the growth rate of the perturbat ion amplitude obtained using the model of [3]). The parameter/3m 
is inversely proportional to A'-' and decreases rapidly with increase in A. Obviously, the smaller the parameter  
/3m, the less it differs from/3*. Thus, the calculations agree with (3) in the range of validity of this equation. 

Immediately after passage of the first shock, the initial amplitude of the perturbation decreases some- 
what. This decreased amplitude a~ can be determined approximately by analyzing the numerical results. 
Table 1 (column 6) shows the values of the derivative hi after passage of the first shock, calculated using 
formula (2), where, the initial amplitude a0 is replaced by the quanti ty (a0 + a'o)/2. Meyer and Blewett [3] 
proposed this model for the case A < 0, analyzing results of calculations using the equations of hydrodynam- 
ics simulating experiments with gases in shock tubes. Dimonte et al. [8] note that  the model is in satisfactory 
agreement with an experiment in which both media were in the solid state before arrival of the shock wave. 
As follows from Table 1, the values of hi obtained differ from the model of [3] by not more than 10%. 

Let us analyze the main results obtained for large values of 3m- Figure 1 shows the free-boundary 
shape for several successive times t = 0, 0.54, 0.61, 0.65, 0.67, 0.75, 0.81, and 0.85 #sec (curves 1-8). The 
shock-wave parameters ul,  Au, and 7 have the same values as in the previous calculations. The parameters  
of the initial per turbat ion are r = 0.004 mm and A = 0.1 mm. Along the ordinate axis, we plot the deviation 
of the y coordinate of the boundary from a certain mean value YU2, which is defined for each position of the 
boundary  as the y coordinate of the point located in the middle of the boundary. The initial shape of the 
boundary  (curve 1) has a maximum of the y coordinate at x = 0 and a minimum at x = A/2. The remaining 
curves correspond to times after passage of the first shock. One can see that  the perturbat ion phase changed: 
the y coordinate now has the minimum at x = 0 and the maximum at x = A/2. 

Curves 2-4 in Fig. 2 show the process of formation of an aluminum drop near x = 0. In the absence 
of a second shock wave, this drop would separate from the main body of aluminum. Formation of the first 
drop can be regarded as the beginning of formation of a sheet of many drops, which is similar to the stage of 
turbulent  mixing at the interface between two media. 

In the above example, the parameters of the problem are selected so that  at the moment of arrival of 
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TABLE 2 

A 

0.i 4 . 10  -3 

0.1 4.10 -3 
0.1 4 - 1 0  - 3  

0.1 4.10 -~ 
0.05 5- 10 -4 
0.05 5- 10 -a 
0.05 5.10 -4 
0.05 5"  10 - 4  

0.05 5- 10 -4 
0.02 8- 10 -5 

Fig. 3 

r ~, al 

0.19 1.0 1.0 
0.20 2.0 1.0 
0.22 3.5 0.76 
0.27 5.5 0.65 
0.19 0.5 0.25 
0.20 0.9 0.25 
0.22 1.7 0.22 
0.27 3.0 0.14 
0.32 4.0 0.1 
0.27 3.9 0.07 

t, .~sec 

0 1.0 
0.5 1.5 
0.62 1.38 
0.60 1.25 
0.28 0.53 
0.55 0.80 
0.92 1.14 
1.05 1.2 
0.97 1.07 
1.35 1.4 

the second wave, the small bridge separating the drop from the main body of aluminum still exists. Curves 

5-8 (Fig. 2) show the evolution of the free boundary  after passage of the second shock. Being almost detached 

(see curve 5), the drop is gradually absorbed by the main body of aluminum. At the same time, an aluminum 

"tongue" forms and begins to grow near the opposite boundary  x -- A/2. Qualitatively, this process does not 

differ from the process of phase inversion due to passage of the first shock wave. 

The amplitude of oscillations of the boundary  Ay _-- Ymax - Ymin versus time is shown in Fig. 3. After 

arrival of the first shock at t ~ 0.53 #sec, the phase of the initial perturbation changes, and the amplitude 

decreases almost to zero (curve 1; A = 0.1 mm and Au  ---- 0.5 km/sec). Before arrival of the second shock at 

t ~ 0.65 #sec, the amplitude increases. After that ,  phase inversion occurs again and the amplitude decreases. 

In Fig. 3, the inflection points of curve 1 correspond to the moments when boundary points with extremum 

values of y changes their position instantaneously. The increase in the amplitude at the end of calculation is 

related to the growing aluminum "tongue" near the boundary x -- A/2. 

As ~- increases, the time of arrival of the second shock wave increases. Starting from a certain value 

7o, the aluminum drop is completely separated from the main body, and the simple connectedness of the flow 

domain is broken. As mentioned above, to perform a calculation for this case using the proposed numerical 

method, a time-consuming procedure is needed for changing the mesh structure. Such calculations have not 

been performed. However, one should take into account that  a slight increase in T does not lead to qualitative 

changes in the time dependence of the amplitude. Additional acceleration of the main body of aluminum due 

to arrival of the second shock wave will result in a rapid at tachment  of the separated drop to the main body. 

Results of the main series of calculations for large values of/3m are given in Table 2. In contrast to 

Table 1, Table 2 gives calculation results for perturbations with shorter wavelengths A -- 0.10, 0.05, and 

0.02 mm for Ul -- 3 km/sec and Au = 0.5 km/sec. The initial amplitude ~ for each A was chosen so that  

in the case of arrival of only the first shock wave, the relative ampli tude/3 = 27rAy/A reached sufficiently 
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large values at the same time for all cases. For perturbat ions with A = 0.10 and 0.05 mm, we carried out 
calculations for various delays of the second shock 7-. An increase in 7- leads to an increase in the relative 
amplitude ~m at the moment of arrival of the second shock. 

As /3m increases, the parameter /3* in formula (5) first grows and then decreases. This means that  
at the nonlinear stage of instability development, the change in the amplitude growth rate Ah ceases to 
depend significantly on the relative amplitude ~,~ by the moment of arrival of the second shock wave. From a 
comparison of the values of ~* obtained for various values of A, one more important  conclusion follows: at the 
nonlinear stage of instability development, the quanti ty Ah depends weakly on the perturbat ion wavelength. 
Thus, assigning a certain mean value of/3* in formula (5), we can choose the change in the velocity of the 
boundary after arrival of the second shock Av if only the amplitude growth rate hi is known. In particular, 
setting h2 ---- 0 in (5) we obtain the freezing regime. In the boundary condition, the parameter  of the second 
shock is Au  = A v / 2  according to the rule of velocity doubling. For strong shocks, Au can be determined 
from a series of one-dimensional calculations. To validate this approach, we performed the following test 
calculations. In Table 2, the values of the parameter/3* for wavelen~hs A = 0.10, 0.05, and 0.02 mm and 
the maximum values of 7 are equal to 1.25, 1.07, and 1.40, respectively. In all test calculations, we used the 
mean value/3* -- 1.25. Then, for the specified wavelengths we take the corresponding values of al from Table 
2 and, using formula (5), determine the values of 

hi Av 
A'v = - A/3--- 7, Au = --~-. (6) 

Figure 3 shows curves of the perturbat ion amplitude versus time for Au = 0.5 km/sec (curves 1, 3, 
and 5) and Au obtained from formula (6) (curves 2, 4, and 6), for A -= 0.10, 0.05, and 0.02 mm (curves 1 
and 2, 3 and 4, and 5 and 6, respectively). For A = 0.1 ram, the parameter  v was slightly decreased to avoid 
separation of the drop. It is obvious that for the three values of A considered, the desired effect was achieved. 

Let us describe calculation results for the case where the initial perturbat ion is not sinusoidal with 
a certain wavelength. This problem is also solved in the interval 0 < x ~< A/2 with the above symmetry  
condition at its ends, and the initial perturbat ion is specified by a broken line with three segments: 

I 1 - o x 
y(x) = - 1  + 2 ( x -  0.2A)/(0.1A), 0.2A ~< x ~< 0.3A, 

1 2(x 0.3A)/(0.2A), 0.3A ~< x ~< 0.5A, 

where the central segment is half the end segments. In Fig. 4, the evolution of this perturbat ion is shown 
for A : 0.2 mnl and ~ = 0.002 mm at t = 0, 0.55, 0.60, and 0.66 #sec (curves 1-4) after a shock with 
ul = 3 km/sec arrives at the free surface. One can see that  phase inversion occurs, the boundary rapidly 
takes a complicated shape, and a drop is formed in the neighborhood of the point x = 0.3A = 0.06 mm, which 

is an ext remum point of the initial perturbation. 
To find the parameters of the second shock, we use the method described above. From the calculation 

results, we obtain the value of hi at a certain time. Formulas (6) with/3* = 1.25 are used to calculate the 
parameter  Au. Then, we perform a series of one-dimensional calculations to determine the delay v of the 
second shock that  ensures its arrival at the free surface at the required time. Figure 5 shows results of this 
calculation (curve 2) and also results of a calculation without a second shock (curve 1). One can see that  the 

freezing effect is achieved. 
C o n c l u s i o n .  For shock waves in aluminum with a postshock pressure of about 75 GPa, we obtained 

the following result. If at the moment the second shock arrives at the free boundary, the per turbat ion 
evolution is at the nonlinear stage, then, in contrast to the linear stage, the change in the amplitude growth 
rate depends weakly on the wavelength of the initial perturbation.  This makes it possible to determine 
parameters of the second shock that  ensure freezing of the instability using the value of the amplitude growth 
rate, obtained, for example, from an experiment. 

The proposed method for obtaining parameters of the second shock is based on formula (5), in which the 
structure of Richtmyer's formula is preserved. Thus, this method may be used for different shock parameters  
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and for different media, including flow with an interface between two media. Conceivably, the proposed value 
of the parameter/3* = 1.25 will not require significant correction. 

There is still an open question of the choice of parameters of the second shock if at the moment it 
enters the boundary, the evolution of perturbations is at the stage of turbulent mixing. For example, in 
experimental studies of Rayleigh-Taytor instability [16, 17], acceleration is first directed from a light material 
to a heavy material, and this leads to rapid development of turbulence at the interface. Then, the direction 
of the acceleration changes. As a result, a separation phenomenon is observed, i.e., the width of the turbulent 
mixing region decreases. It is of interest to perform the corresponding experiments with shocks. It is not 
impossible that even at the stage of turbulent mixing, the impact of the second shock is approximately 
described by formula (5) with the appropriate choice of the parameter fl*. 

The author is grateful to I. V. Lomonosov and K. V. Khishchenko for tables of the equations of state 
of aluminum. 
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